
International Journal of Information Technology and Knowledge Management
January-June 2011, Volume 4, No. 1, pp. 151-156

CONGESTION CONTROL IN DIFFI-SERV USING FUZZY AND
NEURAL METHODOLOGY

Aastha1, Tarun Aggarwal2 & Sachin Garg3

The paper covers a brief introduction of the problem of congestion and its control using the rule base of the fuzzy module
refined by neural module. A number of new applications being developed for the Internet require stringent bounds on
parameters such as the end-to-end delays and inter-packet jitter. In order to provide these bounds led to the development of
alternate mechanisms based on policies that could be deployed on the existing network infrastructure with minimal changes,
and still provide a suitable Quality of Service. Differentiated Services (Diff-Serv) is one such technology. DS can be
implemented with relatively small disturbance to the existing infrastructure. For this the congestion control algorithm called
Random Early Detection is discussed with fuzzy-neuro system as the technique called Random Early Detection technique
used in differentiated services network by applying Neuro-Fuzzy approach is slightly modified. First, Introduction to fuzzy
inference module by applying various fuzzy based control strategies is there and then refined with its rule-base with the help
of neural network to incorporate network dynamic conditions which keeps on changing with time. The experience with NS2
network simulator is also discussed.
Keywords: Congestion Control, Differentiated Services, Neuro-Fuzzy Systems

1Department of Computer Science & Engineering, TIT&S,
Bhiwani, India

2Tata Consultancy Services, Gurgaon, India
3Global Systems LLC, Irwing, TEXAS, US

Email: 1astha.raghu@gmail.com, 2tarun.002@gmail.com,
3mail2sac_garg@yahoo.com

1. INTRODUCTION

1.1. Congestion

Congestion control should not be confused with flow
control, which prevents the sender from overwhelming the
receiver. Congestion control is concerned with allocating
the resources in a network such that the network can operate
at an acceptable performance level when the demand
exceeds or is near the capacity of the network resources.

In simple terms, “Congestion occurs when routers
receives packets faster than they can forward.”

Although resource allocation is necessary even at low
load, the problem becomes more important as the load
increases because the issues of fairness and low overhead
become increasingly important.

1.2. DiffServ

Differentiated Services or DiffServ is a computer networking
architecture that specifies a simple, scalable and coarse-
grained mechanism for classifying, managing network traffic
and providing Quality of Service (QoS) guarantees on
modern IP networks.

DiffServ operates on the principle of traffic
classification, where each data packet is placed into a limited
number of traffic classes. Each router on the network is
configured to differentiate traffic based on its class. Each
traffic class can be managed differently, ensuring preferential
treatment for higher-priority traffic on the network.

DiffServ can, for example, be used to provide low-
latency, guaranteed service (GS) to critical network traffic
such as voice or video while providing simple best-effort
traffic guarantees to non-critical services such as web traffic
or file transfers.

Basic Goals of Diffi-Serv:

• It allows different levels of services on a common
network infrastructure.

• It provides a better QoS.

2. SIMULATION DETAILS

2.1. Introduction

In the work proposed here is to control the congestion using
fuzzy rule set and refining these rule set with the help of
neural network module, for this, the previously used
congestion control technique called Random Early Detection
for Diffi-Serv is used. The RED implementation for Diffi-
Serv defines different thresholds for each class. RED simply
sets some minimum and maximum dropping thresholds in
the router queues. If the buffer queue size exceeds the
minimum threshold, RED starts randomly dropping packets
based on a probability depending on the average queue

mailto:raghu@gmail.com
mailto:002@gmail.com
mailto:3mail2sac_garg@yahoo.com1.INTRODUCTION

152 AASTHA, TARUN AGGARWAL & SACHIN GARG

length. If the buffer queue size exceeds the maximum
threshold then every packet is dropped.

2.2. The Implementation

The implementation goes in the two modules. First is Fuzzy
Inference module and other is Neural network Adaptive
Module which is wholly be called as Neuro-fuzzy system.

Fuzzy logic system deals with explicit knowledge that
is average queue length in this case, and neural networks,
which deal with implicit knowledge that are fuzzily
calculated packet drop probability and error signal in this
case, which can be acquired by learning.

Whenever a packet arrives to get enque in the buffer
then average queue length is calculated by the RED
algorithm. If average queue length is lower than the
minimum threshold then packet is simply enqued. But if
when buffer average queue size exceeds the minimum
threshold, at that time concept of fuzzy logic to calculate
the packet drop probability is introduced.

First of all Fuzzy logic fuzzifies the average queue
length and calculates packet drop probability through the
inference engine which works on rules defined in rule-base.
Finally the calculated fuzzified packet drop probability is
defuzzified by the defuzzifier of fuzzy logic Module. This
defuzzified packet drop probability is used as parameter to
decide whether packet will be enqued or early-dropped.

Fig. 1: The Basic Approach used for the Implementation

2.3. Implementation of Fuzzy Inference Module

Fuzzy logic module starts working whenever a packet comes
and the calculated average queue length is greater than
minimum threshold and less than maximum threshold. It
fuzzifies the average queue length and calculates packet drop
probability through inference engine.

Fuzzy logic is especially suitable for cases where
control decisions must be made without exact information
about the controlled environment. Fuzzy inference systems
consist of fuzzy variables, a rule base and a reasoning
mechanism. This fuzzy inference module modifies its rule-
base according to the input provided by neural network.
Fuzzy Inference Module comprises of four sub-modules.

• Fuzzifier;

• Inference Engine;

• Rule-Base;

• Defuzzifier.

Fig 2: The Fuzzy Inference Module

2.4. Fuzzifier

Fuzzification is necessary to convert the input crisp data
into a suitable set of linguistic value that is needed in
inference engine. Linguistic values separate numeric value
ranges of the variables to sub-ranges. The input provided to
the fuzzifier is the average queue length calculated.

The term set of input linguistic variable can be defined
as:

fuzzy_len(ql)= {low, medium, high, very high}

The fuzzy value represented by fuzzy_len[ql] can be
written as (low < medium) where (“<“ fuzzily means small,
not absolutely small). So the queue length (low) is fuzzily
minimal and (very high) means fuzzily maximal. The centre
value of fuzzy_len is denoted by qc[i]. Thus qc[i] < qc[i+1]
(where “<“fuzzily means small, not absolutely small). The
larger value of i means the heavier congestion in the link,
and then much larger Pkt_drop_prob (pdp) is required.

Fig. 3: Trapezoidal Function

To fuzzify the input variable, have been used the
trapezium function as membership function. Trapezium
function takes five parameters as input and output one
linguistic value which is fuzzified form of average queue
length.

2.5. Rule-Base

A rule base of fuzzy controllers defines control actions of
controllers in the defined states of controlled processes. The
rule base consists of a set of IF-THEN type of rules which

CONGESTION CONTROL IN DIFFI-SERV USING FUZZY AND NEURAL METHODOLOGY 153

describe the controlled states of the processes and suitable
control actions for the states using the linguistic values of
input and output variables. As we know that the
fuzzy_len(ql) signify the current congestion status at some
degree. The larger the value of i in fuzzy_len means heavier
congestion in the link, and then network require much larger
packet drop probability pdp[i]. So the rules are defined as:

• If average queue length is low then packet drop
probability is small.

• If average queue length is medium then packet drop
probability is medium.

• If average queue length is high then packet drop
probability is high.

• If average queue length is very high then packet
drop probability is very high.

2.6. Inference Engine

It is used to infer the value of the parameter according to
the applicable rule specified in the rule-base. The value can
be calculated on the fuzzified average queue length by the
rule-base. First the input variable qParam_[prec].edv_.v_ave
is first mapped to its membership function and then the final
output of the FIM, Packet drop probability is calculated as:

Pkt_drop_prob =

1 4 fuzzy_len_cal[]* prob[]

1 4 fuzzy_len_cal[]

i i i

i i

=
=

∑
∑




2.7. Defuzzification

An output variable in fuzzy logic controllers describes
possible control actions. As fuzzy variables, consists of one
to several linguistic values which are commonly
understandable names or symbols. So in this particular step
we defined output term set of the variable
Pkt_drop_prob(pdp). The term set of packet drop
probability, as follows.

Pkt_drop_prob (pdp) = {small, medium, high, very
high}

The fuzzy value represented by Pkt_drop_prob(pdp)
can be written as (very small < medium) where (“<“ fuzzily
means small, not absolutely small). So the packet drop
probability (small) is fuzzily minimal and (very high) means
fuzzily maximal. The centre value of Pkt_drop_prob(pdp)
is denoted by pc[i]. Thus pc[i] < pc[i+1] (where “<“fuzzily
means small, not absolutely small). We map the
Pkt_drop_prob[i] to the crisp packet drop probability. This
defuzzified packet drop probability is used to determine
whether to drop packet or enque it.

2.8. Implementation of Neural Network Adaptive
Module

To handle changing network conditions, the need is to update
the network parameters time to time. For that, apply second
part of the algorithm which is refinement of rule-base
through neural network to help inference engine to take
action according the current network condition. It aims to
minimize the error signal, e between actual queue size and
stable queue size. The back-propagation learning algorithm
has been used to update the network weights and bias.

2.9. The Model

Here, have been used a dynamic recurrent neural network
with feedback connection. The model uses three-layer
perceptron neural network. The inputs of this neural network
are the error signal, e and the probability, p as a feedback
signal from its output. Here, have been treated the input
signal as one-dimensional array u = [e, prob_output]. The
initial values of the weights in the first and second layers,
and the bias, were uniformly distributed in [–1, 1].

Fig. 4: The Neural Network Adaptive Module

The weights of first layer are in two-dimensional matrix
form and are represented by v_weight. The first column and
the second column of the first layer are related to the error
signal and the feedback probability, respectively. The weight
vector in the second layer is a one-dimensional form
represented by y_weight. We have taken b_neural as a bias
connected with unit input. The dynamic behavior of the
network is given by:

y_output
i+1

 =a_gain * y_output
i
+ y_weight t *

(v_weight * u) + b_neural

where a_gain is the feedback gain, i denotes discrete time.

Finally, the network prob_output is obtained from the
activation function is given by:

prob_output = 1/(1 + exp(–(a_scaling * y_output)))

where a_scaling is a positive constant scaling factor. This
particular output is used as input for the rules modification
in rule-base. This prob_ouput is also sent back to the network
as a feedback.

154 AASTHA, TARUN AGGARWAL & SACHIN GARG

2.10. The Training Procedure

Back-propagation learning algorithm is used to derive the
rules for updating the network weights and bias. The neural
network was trained to determine the optimal weights and
bias after iterative network training with randomly chosen
initial weights and bias, the optimal weights that minimize
the error signal.

The back-propagation algorithm works on the principle
of computing activations and signals of input, hidden and
output neurons in the sequence. Then it computes the error
over the output neurons by comparing the generated outputs
with the desired outputs. This computed error is used to
change in the hidden to output layer weights, and change in
input to hidden layer weights. The bias weights which are
connected to network are also updated.

2.11. The Weight Updates

For the hidden to output layer weights:

y_weight k+1 = y_weightk + ∆y_weight

∆y_weight = n_learning_rate * delta*
i=12,3, j=1,2

(Σ v_weight
ij
 * u[j])

For the input to hidden layer weights

v_weight k+1 = v_weight k + “v_weight

∆v_weight = n_learning_rate * delta * (y_weight
i
 * u[j])

where n_learning_rate is the learning rate and delta is

delta = q_error * (q_error \ (prob_output
(k)

- prob_output

(k-1)
)) * (a_scaling *

(exp(–(a_scaling*y_output)))/(1+ (exp(–(a_scaling *
y_output))))2)

2.12. The Bias Update

b_neural k+1 = b_neural k + ∆b_neural

∆b_neural = n_learning_rate * delta

2.13. Refinement of the Rule-base

pc[3] = minimum(1, temp_pdr)

where temp_pdr = prob_output * ((qc[3]-qc[0])/(q_stable-
qc[0]))

If qc[i] <= q_stable

Then pc[i] = (prob_output * ((qc[j]-qc[0]) / (q_stable-qc[0])

If qc[j] > q_stable

Then pc[i] = ((pc[3]* (qc[j] - q_stable))/2 + ((
prob_output * (qc[3]-qc[j])) / (qc[3]-q_stable)))

Where i = 0…3

2.14. Refining Rule-base when Queue Average is
Greater than Maximum Threshold

When the average queue length is greater than the maximum
threshold then updated the rules in the rule-base of fuzzy
logic module. But difference in this rules updates is that
here I modify the linguistic queue length parameter.

If queue_average >= max_threshold

Then q_stable = (min_threshold +max_threshold)/2

q [0] = min_threshold

q [3] = max_theshold

and other q[i] are updated in the arithmetic progression.

3. RESULT AND DISCUSSION

Analysis of the performance of both the algorithms; original
RED and the Modified RED is here with some cases.

Case1: Two CBR EF traffic flow sending packets from
S3 to D2 and S6 to D3 at 1.5Mbps; And four CBR best-
effort traffic Sending from S1 to D1, S2 to D1, S4 to D2, S5
to D3 at 31Mbps. The scheduler used is priority and queue
rate is 30Mbps.

Table1
Results Case 1

Algorithm TotPkts TxPkts ldrops edrops

Original_dsRed 494595 384155 502 109938

Modified_dsRed 494595 387750 79974 26871

CONGESTION CONTROL IN DIFFI-SERV USING FUZZY AND NEURAL METHODOLOGY 155

After calculations, the percentage of packets dropped
in original RED is 22.329% and that of modified RED is
21.602% in this case & The Throughput of original RED =
77.6706% and that of modified RED =78.3975%.

Case 2: The traffic sending rate of two CBR EF is same
as case1. But changed the rate of four CBR best-efforts to
25Mbps. The scheduler used is priority again and queue
rate is 30Mbps.

Table 2
Results Case 2

CP TotPkts TxPkts ldrops edrops

Original_dsRed 401129 384542 1230 15357

Modified_dsRed 401129 388464 23 12642

The Throughput of original RED = 95.864% and that
of modified RED = 96.843%, the packet drop probability
of original RED comes out 4.135% and that of modified
RED is 3.157, which is good enough.

So, the results show that performance can be improved
and in future, we can have a better version to be implemented
on a Diffi-Serv network.

REFERENCES

[1] A. Pitsillides, A. Sekercioglu, C. Chrysostomou, G.
Hadjipollas and M. Polycarpou, “Fuzzy Explicit Marking

for Congestion Control in differentiated Services
Networks”, in Proc.8th IEEE Symposium on Computers and
Communications, Antalya, Turkey, 1, pp. 312-330, June-3
July 2003.

[2] Raj Jain, “Congestion Control in Computer Networks:
Issues and Trends,” IEEE Network Magazine, pp. 24-30,
May 1990.

[3] A. Pitsillidesa, A. Sekerciogluc, C. Chrysostomoua,
L. Rossidesa and M. Polycarpoub, “Congestion Control in
Differentiated Services Networks using Fuzzy-RED,”
[Online]. Available www.sciencedirect.com, 2003.

[4] Hannu Koivisto, Mikko Laurikkala, Teemu Ekola and Timo
Lehto, “Performance of Nonlinear Queue Management
Algorithm in Best-effort Networks,” Tampere University of
Technology, Finland, 2005.

[5] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM Trans.
Networking, 4, pp. 397–413, Aug. 1993.

[6] C.V. Hollot, Don Towsley, Vishal Misra, and Wei-Bo Gong,
“A Control Theoretic Analysis of RED,” in Proc. IEEE
INFOCOM, 2001.

[7] A. Pitsillides, C. Chrysostomou, L. Rossides, and Y. A.
Sekercioglu, “Fuzzy Logic Controlled RED: Congestion
Control in TCP/IP Differentiated Services Networks,” Soft
Computing Journal, Springer-Verlag, 8, pp. 79-92,
December 2003.

[8] Farhan Shallwani, Jeremy Ethridge, Mandeep Baines and
Peter Pieda, “A Network Simulator Differentiated Services
Implementation Open IP, Nortel Networks,” July 26, 2000.

[9] Manish Mahajan, Ananthanarayanan Ramanathan and
Manish Parashar, “Active Resource Management for the
Differentiated Services Environment”, International
Journal of Network Management, pp. 149–165, 2004.

[10] Jun OGAWA, Yuji NOMURA, “A Simple Resource
Management Architecture for Differentiated Services”.

[11] Gonzalo R. Arce, Kenneth E.Barner, and Liangping Ma,
“Median Red Algorithm for Congestion Control,” IEEE
2004.

[12] Andreas Pitsillides and Ahmet Sekercioglu, “Fuzzy Logic
based Congestion Control,” in Proc. COST 257: Impacts
of New Services on the Architecture and Network
Performance of Broadband Networks, Larnaca, Cyprus,
September 1999.

[13] A. Pitsillides, A. Sekercioglu, C. Chrysostomou,
G. Hadjipollas and M. Polycarpou, “Fuzzy Logic
Congestion Control in TCP/IP Best-Effort Networks”, in
Proc. Australian Telecommunications Networks and
Applications Conference, Melbourne, Australia, 8-10
December 2003.

[14] David Lapsley and Steven Low, “Random Early Marking:
An Optimization Approach to Internet Congestion Control”.

[15] Dong Lin and Robert Morris, “Dynamics of Random Early
Detection,” Slightly Revised Version of the Paper Appeared
in Proc. of SIGCOMM,1997.

[16] “AFRED: An Adaptive Fuzzy-based Control Algorithm for
Active Queue Management”, Proceedings of the 28th
Annual IEEE International Conference on Local Computer

www.sciencedirect.com

156 AASTHA, TARUN AGGARWAL & SACHIN GARG

Networks (LCN’03), 0742-1303/03 $ 17.00 © 2003 IEEE.

[17] “Neuro–Fuzzy Rule Generation: Survey in Soft Computing
Framework” Sushmita Mitra and Yoichi Hayashi, IEEE
Transactions on Neural Networks, 11, No. 3, May 2000.

[18] “Neural Network Control for TCP Network Congestion”,
Hyun C. Cho, M. Sami Fadali, Hyunjeong Lee, 2005
American Control Conference, June 8-10, 2005. Portland,
OR, USA.

